Iron binding to human heavy-chain ferritin.
نویسندگان
چکیده
Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.
منابع مشابه
Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ri...
متن کاملRepression of the heavy ferritin chain increases the labile iron pool of human K562 cells.
The role of ferritin in the modulation of the labile iron pool was examined by repressing the heavy subunit of ferritin in K562 cells transfected with an antisense construct. Repression of the heavy ferritin subunit evoked an increase in the chemical levels and pro-oxidant activity of the labile iron pool and, in turn, caused a reduced expression of transferrin receptors and increased expressio...
متن کاملPotential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis.
Exposure to asbestos is a known etiological factor in malignant mesothelioma (MM). However, in vitro cell culture studies have provided paradoxical evidence that asbestos exposure to mesothelial cells causes cytotoxicity or apoptosis rather than malignant transformation. Although it has been shown that the iron associated with asbestos participates in the cell toxicity and probably MM pathogene...
متن کاملA Ferritin from Dendrorhynchus zhejiangensis with Heavy Metals Detoxification Activity
Ferritin, an iron homeostasis protein, has important functions in transition and storage of toxic metal ions. In this study, the full-length cDNA of ferritin was isolated from Dendrorhynchus zhejiangensis by cDNA library and RACE approaches. The higher similarity and conserved motifs for ferritin were also identified in worm counterparts, indicating that it belonged to a new member of ferritin ...
متن کاملCytoprotective effects of ferritin on doxorubicin-induced breast cancer cell death
Ferritin is a major iron storage protein and essential for iron homeostasis. It has a wide range of functions in the body including iron delivery, immunosuppression, angiogenesis, and cell proliferation. Ferritin is overexpressed in many cancer cells, but its precise role in cancer is unclear. In the present study, we examined the functional roles of ferritin in protecting the MCF-7 breast canc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 71 Pt 9 شماره
صفحات -
تاریخ انتشار 2015